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LE’ITER TO THE EDITOR 

On the Lie symmetry approach to Small’s equation of 
nonlinear optics 

A Roy Chowdhury and Pranab K Chanda 
High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta- 
700 032, India 

Received 17 August 1984 

Abstract. We have analysed the set of nonlinear equations suggested by Small from the 
point of view of Lie symmetry. It has been demonstrated that these equations, describing 
the propagation of an electromagnetic wave in a nonlinear medium, admit various kinds 
of symmetry transformation for special values of the parameters. It is also shown that the 
explicit ansatz type solutions of the same equations obtained earlier by Chanda and Ray 
can be obtained in a very straightforward way from our point transformation analysis. 
Other solutions are obtained for some special parameter values. 

In a recent communication Small (198 1) suggested a set of nonlinear partial differential 
equations for the description of the bunching phenomenon of paraxial rays in a 
nonlinear medium. These equations were solved in some special situations by Chanda 
and Ray (1983) with the help of some ansatz type substitutions. However, since it is 
well known that such a substitutional technique can not exhaust all possible situations, 
we consider here a methodical procedure for the solution. The method is that of Lie 
point symmetry (Bluman and Cole 1974). It is quite interesting to observe that the 
simplest Lie transformation corresponding to constant generators gives the two sol- 
utions discussed by Chanda and Ray (1983), with the help of an ansatz type substitution. 
Apart from these we have also obtained other solutions corresponding to non-trivial 
symmetry generators. 

We start with the formulation. The equations under consideration read 

Let us consider a set of Lie point transformations given by 

and demand the invariance of ( l ) ,  that is the equations hold in the same manner even 
in the new variables: 

Substituting from (2) in (3) and considering terms in first order in E, we get the following 
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equations for the determination of T ' ,  ti 
(4) T,,+ V y y  - 2a4,77: - wy77; - (42,+ 4: - k h 2 + 3 a 2 P 7 I 2  = 0 

~ 2 ~ x x + ~ 2 ~ y y + a ~ f u + ~ ~ ~ y + ~ ~ x ~ ~ + ~ ~ x ~ ~ + ~ ~ y ~ ~ + ~ ~ y ~ ~ = ~ .  ( 5 )  

In these equations we denote by v i ,  T ; ~  the total derivative of 77' or 772 with respect 
to x or y. The expressions for these are too long and involved to be quoted here. We 
only give here the form of the first-order derivatives of 77' and 772 (Ovsjannikov 1978) 

2 2  

Substituting these expressions and also inserting those for the second derivatives in 
(4) and ( 5 ) ,  we equate to zero the coefficients of the derivatives of 4 and a to obtain 
equations for v i  and ti. The two sets of equations are 

77l = - a - ' w 4 ,  x, Y)+ m ( 4 ) ,  T 2  = af (4  + g( 4, x, Y (10) 

which when inserted in the rest of equations of (8) and (9) suggests the following 
structures in each individual case. 

Case 1 .  ko # 0, p # 0 

g =  f = h = O ,  m = constant a51 a52  _- 851 a52  

ay a x '  ax ay 
- -0, ---- 

so that 
77' = constant = p (say), $=o, 
51 = -Ay + B, 5 2  = AX+ C. 
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In the very special situation when A = 0 = B, C = 1 the Lagrange equations pertaining 
to this case are; 

dx/0 = dy/ 1 = d#/p  = da/O. 

So we get 

9 = PY +f (x ) ,  a = g(x). 

Substituting in the original equation we get 

f = D  dx/g2 5 
and 

8X.x -fh - ( P2 - k 3 g  + Pg3 = 0. 

Eliminating f between (13) and (14) we have 

h g  dg 
x = [  [-pg6+2(p2-ki)g4+Eg2-2D 2 I I/2' 

So that we obtain the first set of solutions as 

h a  da  
[-pa6+2(p2- k;)a4+Ea2+-2D2]'/2' 

The second integral in (16) can be equated with the help of elliptic functions. At this 
point it is worth mentioning that this solution was obtained by Chanda and Ray through 
an ansatz type calculation, which required some intricate manipulation in the intermedi- 
ate steps. However, in this paper the same result is obtained in a very simple manner 
through Lie point symmetry. 

Case 2. 

q 1  = p  (constant), q 2  = 0, 51 = -Y, 5 2  = x. 

The corresponding Lagrange equations are 

Integration of these leads to 

x2 + y2 = constant = r2 

# = p  sin- '(y/r)+f(r) .  

Transforming to polar coordinate in two dimensions (i.e. x = r cos 0, y = r sin e) we get 

#J =f ( r )+@,  a = g (  r). (19) 

gr / r+ grr - (f: +p21r2 - ki)g + pg' = 0 

Substituting in the original equation transformed to polar variables we get 

(20) 
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and 

f = A dr/rg2+ B. I 
an ordinary nonlinear differential equation for g. 

At this point it is worth mentioning that no further symmetry transformation is 
seen to exist for the case p # 0, k,, # 0 as in the presence of the term pa3 our equation 
behaves in a manner similar to the nonlinear Klein-Gordon system 4xx - 4,, = 
which is also known to possess only two or three symmetry transformations. However 
again it is interesting to note that our equation (22) is identical to equation (14) of 
Chanda and Ray. So we have again reproduced another result of this ansatz type 
calculation of the solution. To explore the other type of solutions we now consider 
the situation when p is small and we can neglect the term pa3. Note that even after 
neglecting p these equations remain nonlinear. So we obtain the following. 

Case 3. p = 0, ko # 0. 

g = o  
ah ag - + h = O ,  

a4 a4 
-- 

a2g a2g a2h azh -+,+ kEg = 0, - + , + k i h = O  
axz ay ax2 ay 

whose solutions are 

r ] ' = - a - ' [ p ( x , y ) s i n 4 + q ( x ,  y)cos 4 ] + ( A s i n 2 4 + B c o s 2 4 )  

r ] 2 = a [ A s i n 2 4 + B c o s 2 4 ] + [ p ( x ,  y)  cos 4 + q ( x , y ) s i n  41 
61 = -A'y + B',  & = A'x + C' 

with 

P x x  + p r y  + k i p  = 0, q x x  + q y y  + k h  = 0. (24) 

Since it is impossible to integrate the Lagrange equations with these r ] ' ,  T' ,  &, f 2  we 
consider a special case of (24) with p = q = 0. In this case the Lagrange equations are 

( 2 5 )  
d a  

U(-A cos 2 4  + B sin 24) ' 
- - dx dy d 4  - -  

-y x A sin 24 + B cos 24 

By integration of x 2 + y 2  = rz  

dY d 4  
( r 2  - yZ)' / '  A sin 24 + B cos 2 4  

which yields 

4 =tan- '  exp[2(A2+ B2)' / ' (  f(r) * e ) ] -  a. 
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The other pair of (25) gives 

a = g cosec1/2 2( 4 + a). 
Substituting in the original equations 

frl r + f r r  + 2frgJg = 0 

and 

r-'(a/ar)( rg) + (A2+ B2) (c2 /  r2g3 + g/ r2) + kig = 0. (29) 

Equation (29) in the special case of c = O  reduces to a Bessel equation and can be 
solved explicitly. Lastly we mention another case in which the Lagrange equations 
can be explicitly integrated. 

Case 4. 

77' = A  sin 2 4 +  B cos 24, 

v2 = a(-A cos 2 4  + B sin 24), 
51 = 0, t2= 1. 

In this case we get 

4 = tan-' exp[2(A2 + B2)'l2(f(x) + y ) ]  - a 

a = g(x) cosecI/2 2( 4 + a). 
Inserting these equations in the original equations we get 

g dg/dx=[2M2(A2+B2)-Ag4+2Ng2]1/2 

or 

dh/dx = [2M2( A2 + B 2 )  - Ah2 + 2 Nh]'" 
or 

=x+c ,  
dh [ [2M2(A2+B2)-Ah2+2Nh]1/2 

which can be easily evaluated in terms of elementary functions. Also f is given as 

f = [ M dx/g2. (32) 

In the above discussion we have shown how the application of Lie point symmetry 
to the equations of nonlinear optics of Small yields the different symmetry transforma- 
tions of the equation and simultaneously generates some physical solutions, previously 
obtained by ansatz type substitutions. 
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